PHOSPHATE-INDEPENDENT CALCIUM EFFLUX FROM LIVER MITOCHONDRIA

Franco ZOCCARATO and David G. NICHOLLS

Neurochemistry Laboratory, Department of Psychiatry, Dundee University, Dundee, DD1 9SY, Scotland

Received 21 April 1981

1. Introduction

Liver mitochondria possess independent pathways for the uptake and efflux of Ca^{2+} (reviews [1,2]). The mechanism of the efflux pathway is unclear; net Ca²⁺ efflux leads to an overall exchange of Ca2+ for 2 H+ across the mitochondrial membrane [3], althoughthere is no evidence that this reflects a strict exchange between protons and Ca2+ at the efflux carrier since other charge-compensating proton movements may occur [1]. It has been suggested [4-6] that the liver efflux pathway operates as a $Ca^{2+}:P_i$ symport, based on the observation that P_i induces a time-dependent net efflux of Ca²⁺ under some conditions. A possible complication in studies of P_i-induced Ca²⁺ efflux is that in incomplete incubation media, lacking Mg2+ and adenine nucleotides, the combination of Ca2+ and Pi can result in a loss of matrix contents, including Mg²⁺, adenine nucleotides and K⁺ [6,7] leading to a collapse of $\Delta \psi$ and an artifactual release of Ca^{2+} [7,8].

Here, we re-examine the role of P_i in Ca^{2+} efflux by incubating mitochondria in the presence of Mg^{2+} and adenine nucleotides and monitoring ruthenium red-induced efflux and $\Delta\psi$ simultaneously. We observe that under these stable conditions P_i strongly inhibits the efflux pathway. It is suggested that P_i acts by lowering the free matrix Ca^{2+} below the concentration required to saturate the efflux pathway, but that since maximal efflux is observed in P_i -depleted mitochondria, there is no evidence for an obligatory co-transport of P_i with Ca^{2+} .

Abbreviations: $\Delta \psi$, mitochondrial membrane potential; pCa $_0^{2+}$, the negative log of the extra-mitochondrial free Ca $^{2+}$ concentration

2. Materials and methods

Rat liver mitochondria were prepared as in [9]. Mitochondrial protein was determined by the biuret method [10]. $^{45}\text{Ca}^{2+}$ accumulation, pCa $_0^{2+}$ and $\Delta\psi$ were determined simultaneously by incubating mitochondria (1.5 mg protein/ml incubation) at 37°C and pH 7.0 in a medium containing 100 mM NaCl, 25 mM 2-([2-hydroxy-1,1-bis(hydroxymethyl)-ethyl]amino)ethane sulphonate (sodium salt), 16 μ M albumin (bovine, fraction V), 2 mM succinate (sodium salt), 1 μ M rotenone, 2 mM nitrilotriacetate (sodium salt), 1 mM MgCl₂, 1 μ M [³H]methyltriphenylphosphonium bromide (0.16 μ Ci/ml) and various concentrations of $^{45}\text{Ca}^{2+}$ (0.05 μ Ci/ml). The volume of the matrix was determined as in [9] and was found to be 0.74 μ l/mg protein.

At defined times, 300 μ l aliquots of the incubation were withdrawn and layered onto 250 μ l of a mixture of 60% (v/v) Dow Corning 550 silicone fluid and 40% dinonylphthalate contained within an Eppendorf tube and centrifuged for 60 s. A portion of the supernatant was taken for counting ⁴⁵Ca²⁺ and ³H. Mitochondrial uptake of the isotopes was calculated by comparison with the counts in an identical volume of uncentrifuged incubation.

The initial ${\rm Ca^{2+}}$ content of the medium and endogenous mitochondrial ${\rm Ca^{2+}}$ were determined in acid extracts by a Corning-Eel Model 240 atomic absorption spectrophotometer. ${\rm pCa_0^{2+}}$ was calculated from the supernatant ${\rm [Ca^{2+}]}$ after allowing for chelation by the nitrilotriacetate [11]. To deplete mitochondria of endogenous ${\rm P_i}$, 0.2 mM ADP, 1 mM glucose and 0.75 units/ml of hexokinase were added to the basic incubation. For the determination of ${\rm P_i}$, 0.75 ml aliquots of the mitochondrial suspension were deproteinated with 20% (final conc. v/v) trichloroacetic acid and ${\rm P_i}$ was analyzed by the method in [12].

3. Results and discussion

Fig.1 shows the effect of varying [Pi] upon the rate of ruthenium red-induced net Ca2+ efflux from liver mitochondria incubated in the presence of ATP, oligomycin and Mg²⁺. As [P_i] is lowered from 3.3 mM to endogenous levels $(60 \,\mu\text{M})$ there is a steady increase in the Ca^{2+} efflux rate from 1-8 nmol Ca^{2+} . min $^{-1}$. mg protein $^{-1}$. The p Ca_0^{2+} maintained by the mitochondria prior to ruthenium red addition was marginally affected by the activation of the efflux pathway, decreasing from 6.24 in the presence of 3.3 mM P_i to 6.14 in the presence of endogenous P_i. This was however only sufficient to alter the matrix Ca²⁺ content by 2 nmol/ mg protein, and a mean value is shown in fig.1 for matrix Ca^{2+} before addition of ruthenium red. $\Delta \psi$ was maintained at a high value for all [Pi] and times, the extreme range for all 56 determinations being only 163-174 mV. The high potential in the absence of added P_i indicates that endogenous P_i is sufficient to

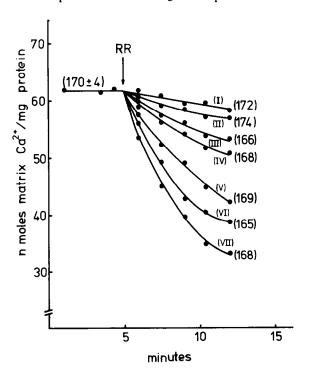


Fig.1. The effect of P_i on Ca^{2+} efflux induced by ruthenium red. Mitochondria were incubated in the basic medium with the additions of 1 μ g oligomycin/ml, 0.2 mM ATP and 83 nmol Ca^{2+} /mg protein; 0.9 μ M ruthenium red (RR) was added where indicated. [P_i] including endogenous P_i was: (I) 3.3 mM; (II) 2 mM; (III) 1 mM; (IV) 0.66 mM; (V) 0.36 mM; (VI) 0.16 mM; (VII) 0.06 mM. Values in parentheses are $\Delta\psi$ (mV) determined at 4 min or 12 min.

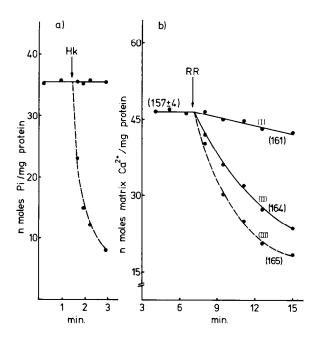


Fig. 2. The effect of P_i depletion on Ca^{2+} efflux induced by ruthenium red. Mitochondria were incubated in the basic medium with the additions of 1 mM glucose, 0.2 mM ADP, 5 mM acetate (sodium salt) and 26 nmol Ca^{2+} /mg protein. In (a) the decrease in endogenous P_i following addition of hexokinase is determined. In the same incubation, at 3.5 min an additional 35 nmol Ca^{2+} /mg protein was added (b) and Ca^{2+} content was determined, 0.9 μ M ruthenium red (RR) was added at 7 min; (III) follows the efflux of Ca^{2+} from these P_i depleted mitochondria; (I) no hexokinase added, 2 mM P_i present from the start; (II) no hexokinase added, endogenous P_i (36 nmol/mg protein). Values in parentheses are $\Delta\psi$ (mV) determined at 6 min and 15 min.

compensate the uptake of up to 60 nmol Ca²⁺/mg protein, as reported in [11].

In order to deplete endogenous P_i , mitochondria were preincubated in the presence of ADP, glucose and hexokinase prior to ruthenium red addition, thus allowing endogenous P_i to phosphorylate ADP and become trapped as glucose 6-phosphate. Fig.2a shows the time-course of P_i depletion by this technique, while fig.2b demonstrates that ruthenium red-induced efflux is still further activated by this technique. In these experiments 5 mM acetate was present throughout; as before $\Delta \psi$ was maintained at >160 mV.

The conclusion from these experiments is that when liver mitochondria are incubated under stable conditions, P_i inhibits rather that activates net Ca^{2+} efflux. In addition, since maximal efflux rates are observed in mitochondria which have been extensively depleted

of P_i this makes the possibility that the efflux pathway operates by $Ca^{2+}:P_i$ co-transport extremely unlikely.

There has been one report that Pi-induced Ca2+ efflux from liver mitochondria incubated in the absence of Mg2+ or adenine nucleotides occurs by a mechanism other than membrane potential collapse [13]. However, $\Delta \psi$ and Ca^{2+} flux were determined in separate experiments under apparently different conditions (valinomycin being present for the $\Delta \psi$ determination and arsenazo III for the spectrophotometric Ca2+ determination). Since the time of onset of P_i-induced Ca²⁺ release is highly variable in replicate experiments (e.g., fig.3,6 in [13]) it is not possible by separate experiments to prove the temporal relationships of Ca^{2+} release, P_i release and $\Delta\psi$ collapse. Significantly, when $\Delta \psi$ and Ca^{2+} transport are monitored in the same incubation during the acetoacetate potentiation of Pi-induced Ca2+ release, collapse of potential and release of Ca²⁺ occur with exact simultaneity [8].

The slow net efflux of Ca^{2+} in the presence of P_i which is observed here is not due to a limitation in the rate at which the matrix $Ca \cdot P_i$ complex can dissociate, since the addition of $0.25\,\mu\mathrm{M}$ carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) to lower $\Delta\psi$ induces a net efflux in the absence of ruthenium red which is in excess of 50 nmol Ca^{2+} . min^{-1} . mg^{-1} (not shown). The alternative possibility is that in the presence of P_i the free matrix $[Ca^{2+}]$ is held below the level required to saturate the efflux pathway, and this is currently being investigated.

Acknowledgements

F. Z. is supported by a grant from the Accademia Nazionale dei Lincei, Italy and the UK Royal Society.

References

- [1] Nicholls, D. G. and Crompton, M. (1980) FEBS Lett. 11, 261-268.
- [2] Saris, N-E. L. and Åkerman, K. E. O. (1980) Curr. Top. Bioenerget. 10, 103-179.
- [3] Fiskum, G. and Lehninger, A. L. (1979) J. Biol. Chem. 254, 6236-6239.
- [4] Lötscher, H. R., Schwerzmann, K. and Carafoli, E. (1979) FEBS Lett. 99, 194-198.
- [5] Carafoli, E. (1979) FEBS Lett. 104, 1-5.
- [6] Zoccarato, F., Rugolo, M., Siliprandi, D. and Siliprandi, N. (1981) Eur. J. Biochem. 114, 195-199.
- [7] Nicholls, D. G. and Scott, I. D. (1980) Biochem. J. 188, 833-839.
- [8] Nicholls, D. G. and Brand, M. (1980) Biochem. J. 188, 113-118.
- [9] Heaton, G. M. and Nicholls, D. G. (1976) Biochem. J. 156, 635-646.
- [10] Gornall, A. G., Bardawill, C. J. and David, M. M. (1949)J. Biol. Chem. 177, 751-766.
- [11] Nicholls, D. G. (1978) Biochem. J. 176, 463-474.
- [12] Baginski, E. S., Foa, P. P. and Zak, B. (1967) Clin. Chim. Acta 15, 155-158.
- [13] Roos, I., Crompton, M. and Carafoli, E. (1980) Eur. J. Biochem. 110, 319-325.